Global Haar-Like Features: A New Extension of Classic Haar Features for Efficient Face Detection in Noisy Images

نویسندگان

  • Mahdi Rezaei
  • Hossein Ziaei Nafchi
  • Sandino Morales
چکیده

This paper addresses the problem of detecting human faces in noisy images. We propose a method that includes a denoising preprocessing step, and a new face detection approach based on a novel extension of Haar-like features. Preprocessing of the input images is focused on the removal of different types of noise while preserving the phase data. For the face detection process, we introduce the concept of global and dynamic global Haar-like features, which are complementary to the well known classical Haar-like features. Matching dynamic global Haar-like features is faster than that of the traditional approach. Also, it does not increase the computational burden in the learning process. Experimental results obtained using images from the MIT-CMU dataset are promising in terms of detection rate and the false alarm rate in comparison with other competing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Streamline Guided Feature Extraction with Applications to Face Detection

We propose a new feature extraction method based on two dynamical systems induced by intensity landscape: the negative gradient system and the Hamiltonian system. We build features based on the Hamiltonian streamlines. These features contain nice global topological information about the intensity landscape, and can be used for object detection. We show that for training images of same size, our...

متن کامل

Facial feature detection using AdaBoost with shape constraints

Recently a fast and efficient face detection method has been devised [11], which relies on the AdaBoost algorithm and a set of Haar Wavelet like features. A natural extension of this approach is to use the same technique to locate individual features within the face region. However, we find that there is insufficient local structure to reliably locate each feature in every image, and thus local...

متن کامل

Ranklets: Orientation Selective Non-Parametric Features Applied to Face Detection

We introduce a family of multiscale, orientation-selective, non-parametric features (“ranklets”) modelled on Haar wavelets. We clarify their relation to the Wilcoxon ranksum test and the rank transform and provide an efficient scheme for computation based on the Mann-Whitney statistics. Finally, we show that ranklets outperform other rank features, Haar wavelets, SNoW and linear SVMs (based on ...

متن کامل

A Multi-Viewpoint Human Tracking Based on Face Detection Using Haar-like Features and a Mean-Shift Tracker

Human tracking is an important function for an automatic surveillance system using a vision sensor. However, it is difficult to identify a human exactly in an image due to the variety of poses. This paper describes a method for automatic human tracking based on face detection using Haar-like features and mean-shift tracking. The method increases its trackability by using multi-viewpoint images....

متن کامل

Face Detection Based on Multi-Block LBP Representation

Effective and real-time face detection has been made possible by using the method of rectangle Haar-like features with AdaBoost learning since Viola and Jones’ work [12]. In this paper, we present the use of a new set of distinctive rectangle features, called Multi-block Local Binary Patterns (MB-LBP), for face detection. The MB-LBP encodes rectangular regions’ intensities by local binary patte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013